If $f(x)=\left\{\begin{matrix}ax^2+b, & x<-1\\bx^2+ax+4, & x≥-1\end{matrix}\right.$ is everywhere differentiable, then : |
$a=2, b=3$ $a=3, b=2$ $a=-2, b=3 $ $a=2, b=-3$ |
$a=2, b=3$ |
The correct answer is option (1) → $a=2, b=3$ $\lim\limits_{-1^-}(ax^2+b)=\lim\limits_{-1^+}(bx^2+ax+4)$ $a+b=b-a+4$ $a=2$ $f(x)=\left\{\begin{matrix}2ax& x<-1\\2bx+a& x>-1\end{matrix}\right.$ LHD at (-1) → -2a RHD at (-1) → -2b+a so $-2b+a=-2a$ $3a=2b$ $3×2=2b⇒b=3$ $a=2$ |