Target Exam

CUET

Subject

General Aptitude Test

Chapter

Quantitative Reasoning

Topic

Algebra

Question:

If x2 – 9x + 1 = 0, what is the value of x8 – 6239x4 + 1?

Options:

1

0

-1

2

Correct Answer:

0

Explanation:

If $K+\frac{1}{K}=n$

then, $K^2+\frac{1}{K^2}$ = n2 – 2

If x2 – 9x + 1 = 0

what is the value of x8 – 6239x4 + 1

Divide x2 – 9x + 1 = 0  both the sides by x we get,

x + \(\frac{1}{x}\) = 9

x2 + \(\frac{1}{x^2}\) = 92 – 2 = 79

and,

x4 + \(\frac{1}{x^4}\) = 792 – 2 = 6239

x8 + 1 = 6239x4 

Put this value in the required equation,

x8 – 6239x4 + 1 = x8 – x8 - 1 + 1 = 0