CUET Preparation Today
CUET
-- Mathematics - Section A
Continuity and Differentiability
If y = loge(2x1−x), then d2ydx2 at x=12 is
12
14
0
35
t=loge(2x1−x) ⇒ So, dydx=12x1−x×ddx(2x1−x)
⇒dydx=1−x2x(1−x)2+2x(1−x)2=22x(1−x)=11−x+1x
d2ydx2=1(1−x)2−1x2
at x=12
d2ydx2=1(1−12)2−1(12)2⇒1(2−12)2−1(14)
1(12)2−114=1(14)−1(14)⇒4−4=0
Correct option is 3rd.