Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Financial Mathematics

Question:

The amount of annuity or future value S of an ordinary annuity of ₹R per period for n periods at the rate/per period is given by :

Options:

$P=S(i+1)^{-n}$

$S=R\begin{Bmatrix}\frac{(1+i)^n-1}{i}\end{Bmatrix}$

$S=R\begin{Bmatrix}\frac{1-(1+i)^{n-1}}{i}\end{Bmatrix}$

$R=\frac{Si}{(1+i)^n+1}$

Correct Answer:

$S=R\begin{Bmatrix}\frac{(1+i)^n-1}{i}\end{Bmatrix}$

Explanation:

The correct answer is Option (2) → $S=R\left\{\frac{(1+i)^n-1}{i}\right\}$

The formula for future value S of an ordinary annuity,

$S=R×\frac{(1+i)^n-1}{i}$

where,

$R$ → Regular payment made at the end of each month.

$i$ → interest rate per period.

$n$ → Number of periods.