The amount of annuity or future value S of an ordinary annuity of ₹R per period for n periods at the rate/per period is given by : |
$P=S(i+1)^{-n}$ $S=R\begin{Bmatrix}\frac{(1+i)^n-1}{i}\end{Bmatrix}$ $S=R\begin{Bmatrix}\frac{1-(1+i)^{n-1}}{i}\end{Bmatrix}$ $R=\frac{Si}{(1+i)^n+1}$ |
$S=R\begin{Bmatrix}\frac{(1+i)^n-1}{i}\end{Bmatrix}$ |
The correct answer is Option (2) → $S=R\left\{\frac{(1+i)^n-1}{i}\right\}$ The formula for future value S of an ordinary annuity, $S=R×\frac{(1+i)^n-1}{i}$ where, $R$ → Regular payment made at the end of each month. $i$ → interest rate per period. $n$ → Number of periods. |