$A=\begin{bmatrix}1 &2 &2\\2&1&-2\\a&2&b\end{bmatrix}$ is a matrix satisfying the |
(2, 1) (-2, -1) (2, -1) (-2, 1) |
(-2, -1) |
We have, $A A^T=9I$ $⇒\begin{bmatrix}1 &2 &2\\2&1&-2\\a&2&b\end{bmatrix}\begin{bmatrix}1 &2 &a\\2&1&2\\2&-2&b\end{bmatrix}=\begin{bmatrix}9 &0 &0\\0&9&0\\0&0&9\end{bmatrix}$ $⇒\begin{bmatrix}9 &0 &a+4+2b\\0&9&2a+2-2b\\a+4+2b&2a+2-2b&a^2+4+b^2\end{bmatrix}=\begin{bmatrix}9 &0 &0\\0&9&0\\0&0&9\end{bmatrix}$ $⇒a+4+2b=0,2a+2-2b = 0$ and $a^2+4+b^2=9$ $⇒a=-2,b=-1$ Hence, $(a,b)=(-2,-1)$. |