For a real number a, if the system $\begin{bmatrix}1&α&α^2\\α &1 &α\\α^2&α&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}1\\-1\\1\end{bmatrix}$ of the linear equations, has infinitely many solutions, then $1+α+α^2=$ |
1 0 -1 2 |
1 |
The given system of equation is $AX = B$ where $A=\begin{bmatrix}1&α&α^2\\α &1 &α\\α^2&α&1\end{bmatrix},X=\begin{bmatrix}x\\y\\z\end{bmatrix}$ and $B=\begin{bmatrix}1\\-1\\1\end{bmatrix}$ If it has infinitely many solutions, then $|A|=0⇒\begin{bmatrix}1&α&α^2\\α &1 &α\\α^2&α&1\end{bmatrix}=0$ $⇒(1-α^2)-a (α-α^3) + α^2 (α^2-α^2)=0$ $⇒1-2α^2+α^=0⇒ (α^2-1)^2=0⇒α=±1$ When $α = 1$, the given system reduces to $x+y+z=1$ $x+y+z = -1$ and, $x+y+z=1$ Clearly, it is an inconsistent system. When $α = -1$, the given system reduces $x-y+z=1$ $-x+y-z=-1$ $x-y+z=1$ This system of equations is equivalent to $x-y+z = 1$ which has infinitely many solutions. |