Four equal charges each equal to 'q' coulomb are placed at the four vertices of a square of side 'a'. The work done in displacing a charge -q from the centre 'O' of the square to infinity is given by: |
$\frac{\sqrt{2} q^2}{4 \pi \varepsilon_{o} a}$ $\frac{\sqrt{2} q^2}{\pi \varepsilon_{o} a}$ $\frac{q^2}{\pi \varepsilon_{o} a}$ $\frac{q^2}{4 \pi \varepsilon_{o} a}$ |
$\frac{\sqrt{2} q^2}{\pi \varepsilon_{o} a}$ |
The correct answer is Option (2) → $\frac{\sqrt{2} q^2}{\pi \varepsilon_{o} a}$ The electric potential at a point due to charge q, $V=\frac{kq}{r}$ Now, At the center of the square (O), the distance of each vertex from the center - $r=\frac{a}{\sqrt{2}}$ $∴V_{single}=\frac{kq}{a/\sqrt{2}}=\sqrt{2}\frac{kq}{a}$ $V_{total}=4×\sqrt{2}\frac{kq}{a}=\frac{4\sqrt{2}k}{a}$ ∴ Work done, $W = q.(V_∞-V_{initial})$ $=-q\left(0-\frac{\sqrt{2}q}{πε_0a}\right)$ $=\frac{\sqrt{2}q^2}{πε_0a}$ |