The random variable X can take only values 0, 1, 2. Given that $P(X=0)=P(X=1)=ρ$ and $E(X^2)=E(X)+1,$ then the value of ρ is : |
$\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{6}$ |
$\frac{1}{4}$ |
The correct answer is option (1) → $\frac{1}{4}$ $P(X=0)=P(X=1)=ρ$ [Given] let $P(X=2)=ρ_2$, since the total probability must be 1, $ρ+ρ+ρ_2=1$ $⇒ρ_2=1-2ρ$ and, $E(X^2)=E(X)+1$ [Given] $E(X)=0.P(X=0)+1.P(X=1)+2.P(X=2)$ $=0.ρ+1.ρ+2(1-2ρ)$ $=2-3ρ$ $E(X^2)=0^2.P(X=0)+1^2.P(X=1)+2^2.P(X=2)$ $=0.ρ+1.ρ+4(1-2ρ)$ $=4-7ρ$ $∴4-7ρ=(2-3ρ)+1$ $⇒1=4ρ$ $⇒ρ=\frac{1}{4}$ |