If A is a square matrix such that $A^2=A,$ then the value of $(I-A)^2-(I+A)^3$ is : |
$-8A$ $8A$ $2(I-4A)$ $2(I+4A)$ |
$-8A$ |
The correct answer is Option (1) → $-8A$ $A^2=A$ so $(I-A)^2-(I+A)^3$ $=(I-A)(I-A)-(I+A)(I+A)(I+A)$ $=(I-A-A+A^2)-(I+A+A+A^2)(I+A)$ $=(I-2A+A)-(I+2A+A)(I+A)$ $=(I-A)-(I+3A)(I+A)$ $=I-A-(I+A+3A+3A^2)$ $=I-A-(I+7A)$ $=-8A$ |