The function $f(x)=2x^3+3x^2-12x+1$ is strictly increasing in : |
[-2, 1] (-∞, -2) ∪ (1, ∞) (-∞, 1] (-∞, -1] ∪ [2, ∞] |
(-∞, -2) ∪ (1, ∞) |
The correct answer is Option (2) → $(-∞, -2) ∪ (1, ∞)$ $f(x)=2x^3+3x^2-12x+1$ $f'(x)=6x^2+6x-12=0$ $6(x+2)(x-1)=0$, $x=1,-2$ Using wavy curve f(x) strictly increasing in $(-∞, -2)∪(1, ∞)$ |