\(\int_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx=\) |
\(\frac{\pi}{2}\) 1 \(\pi\) \(\frac{\pi}{4}\) |
\(\frac{\pi}{4}\) |
The correct answer is Option (4) → \(\frac{\pi}{4}\) $I=\int\limits_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx$ ....(1) $I=\int\limits_{0}^{\frac{\pi}{2}}\frac{\sqrt{\sin(\frac{\pi}{2}-x)}}{\sqrt{\cos(\frac{\pi}{2}-x)}+\sqrt{\sin(\frac{\pi}{2}-x)}}$ $=\int\limits_{0}^{\frac{\pi}{2}}\frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}dx$ ....(2) Add (1) and (2), $2I=\int\limits_{0}^{\frac{\pi}{2}}1\,dx$ $=\frac{\pi}{2}$ $⇒I=\frac{\pi}{4}$ |