Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

Let $f(x)=\int e^x(x-1)(x-2) d x$, then f(x) decreases in the interval

Options:

$(-\infty,-2)$

$(-2,-1)$

$(1,2)$

$(2, \infty)$

Correct Answer:

$(1,2)$

Explanation:

We have,

$f(x)=\int e^x(x-1)(x-2) d x \Rightarrow f'(x)=e^x(x-1)(x-2)$

For f(x) to be decreasing, we must have

$f'(x)<0$

$\Rightarrow e^x(x-1)(x-2)<0 \Rightarrow(x-1)(x-2)<0 \Rightarrow x \in(1,2)$