If the sum of two unit vectors is a unit vector, then the magnitude of their difference is |
$\sqrt{2}$ 3 $\sqrt{3}$ 2 |
$\sqrt{3}$ |
$|\hat{a}+\hat{b}|=1$ so $(\hat{a}+\hat{b}) . (\hat{a}+\hat{b})=1 \Rightarrow 1+2 \hat{a} . \hat{b}+1=1$ so $\hat{a} . \hat{b} = \frac{-1}{2}$ so $\sqrt{(\hat{a}-\hat{b})(\hat{a}-\hat{b})}=\left|\hat{a}-\hat{b}\right| $ $=\sqrt{1-2 \hat{a} \hat{b}+1}=\sqrt{1+1-2 \times(\frac{-1}{2})}=\sqrt{3}$ Option: C |