The maximum profit that a company can make if the profit function is $P(x)=41+24 x-18 x^2$ is : |
39 59 49 29 |
49 |
$P(x)=41+24 x-18 x^2$ differentiating w.r.t x and setting it equal to zero to find critical points $P'(x)=\frac{d}{d x}\left(41+24 x-18 x^2\right)$ $P'(x)=24-36 x=0$ $\Rightarrow 24=36 x$ $x=24 / 36=2 / 3$ differentiating it again $P''(x)=\frac{d}{d x}(24-36 x)=-36$ for $x = \frac{2}{3}$ P''(x) < 0 $x = \frac{2}{3}$ → point of maxima so maximum value of P(x) $P(\frac{2}{3}) = 41 + 24 × \frac{2}{3}-18×\frac{2×2}{3×3}$ = 41 + 16 - 8 = 41 + 8 = 49 |