A company is selling a certain product. The demand function of the product is linear. The company can sell 1000 units when the price is ₹8 per unit and when the price is ₹4 per unit, it can sell 2000 units. The total revenue function (R(x)) is given by : |
$\frac{-x}{250}+12$ $\frac{-x^2}{250}+12$ $\frac{x^2}{250}-12$ $\frac{x^2}{250}+12$ |
$\frac{-x^2}{250}+12$ |
The correct answer is Option (2) → $\frac{-x^2}{250}+12$ $R(x)=p(x).x$ Since the demand function is linear $p(x)=mx+c$ Here, m ⇒ slope, c ⇒ intercept Points of demand function (given) $x=1000,p=8$ $x=2000,p=4$ $M=\frac{p_2-p_1}{x_2-x_1}=\frac{4-8}{2000-1000}=\frac{-4}{1000}=\frac{-1}{250}$ $P(x)=\frac{-1}{250}x+c$ Using point (1000, 8) $8=\frac{-1}{250}(1000)+c$ $8=-4+c$ $c=12$ $∴P(x)=\frac{-1}{250}x+12$ $R(x)=\left(\frac{-1}{250}x+12\right)x$ $=\frac{-1}{250}x^2+12x$ |