$\tan ^{-1} 3+\tan ^{-1} \lambda=\tan ^{-1} \frac{3+\lambda}{1-3 \lambda}$ is valid for which values of $\lambda$ ? |
$\lambda \in\left(-\frac{1}{3}, \frac{1}{3}\right)$ $\lambda>\frac{1}{3}$ $\lambda<\frac{1}{3}$ All real values of $\lambda$ |
$\lambda<\frac{1}{3}$ |
so $\tan ^{-1} 3+\tan ^{-1} \lambda=\tan ^{-1} \frac{3+\lambda}{1-3 \lambda}$ so $3 \lambda<1$ so $\lambda<1 / 3$ |