CUET Preparation Today
CUET
-- Mathematics - Section B1
Indefinite Integration
If f(x)=∫(x2+sin2x1+x2)sec2x dx and f(0)=0 then f(1) equals:
1−π4
π4
tan1+π4
tan1+1
We have,
f(x)=∫{(x2+1)+(1−sin2x)1+x2}sec2xdx
⇒f(x)=∫(sec2x+11+x2)dx
⇒f(x)=tanx+tan−1x+C
∴ f(0)=0⇒C=0
Hence, f(x)=tanx+tan−1x
⇒f(1)=tan1+π4