If $f(x)=\int\left(\frac{x^2+\sin ^2 x}{1+x^2}\right) \sec ^2 x$ dx and $f(0)=0$ then $f(1)$ equals: |
$1-\frac{\pi}{4}$ $\frac{\pi}{4}$ $\tan 1+\frac{\pi}{4}$ $\tan 1+1$ |
$\tan 1+\frac{\pi}{4}$ |
We have, $f(x)=\int\left\{\frac{\left(x^2+1\right)+\left(1-\sin ^2 x\right)}{1+x^2}\right\} \sec ^2 x d x$ $\Rightarrow f(x)=\int\left(\sec ^2 x+\frac{1}{1+x^2}\right) d x$ $\Rightarrow f(x)=\tan x+\tan ^{-1} x+C$ ∴ $f(0)=0 \Rightarrow C=0$ Hence, $f(x)=\tan x+\tan ^{-1} x$ $\Rightarrow f(1)=\tan 1+\frac{\pi}{4}$ |