Evaluate the determinant $\begin{vmatrix} x-y & y-z & z-x\\y-z& z-x & x-y \\z-x & x-y & y-x \end{vmatrix}$ |
$x+y +z$ $3xyz$ $(x-y)(y-z)(z-x)$ 0 |
0 |
The correct answer is Option (4) → 0 $\begin{vmatrix} x-y & y-z & z-x\\y-z& z-x & x-y \\z-x & x-y & y-x \end{vmatrix}$ $R_1→R_1+R_2+R_3$ $=\begin{vmatrix} 0 &0 & 0\\y-z& z-x & x-y \\z-x & x-y & y-x \end{vmatrix}=0$ |