CUET Preparation Today
CUET
-- Mathematics - Section B1
Differential Equations
The general solution of y2dx+(x2−xy+y2)dy=0, is |
tan−1xy+logy+C=0 2tan−1xy+logx+C=0 log(y+√x2+y2)+logy+C=0 logy=tan−1yx+C |
logy=tan−1yx+C |
We have, y2dx+(x2−xy+y2)dy=0⇒dydx=−y2x2−xy+y2 Putting y=vx and dydx=v+xdvdx, we get v+xdvdx=−v21−v+v2 ⇒xdvdx=−v−v3v2−v+1 ⇒v2−v+1v(v2+1)dv=−dxx ⇒(1v−1v2+1)dv=−dxx On integrating, we get logv−tan−1v=−logx+C ⇒log(yx)−tan−1yx=−logx+C⇒logy=tan−1yx+C |