The general solution of $y^2 d x+\left(x^2-x y+y^2\right) d y=0$, is |
$\tan ^{-1} \frac{x}{y}+\log y+C=0$ $2 \tan ^{-1} \frac{x}{y}+\log x+C=0$ $\log \left(y+\sqrt{x^2+y^2}\right)+\log y+C=0$ $\log y=\tan ^{-1} \frac{y}{x}+C$ |
$\log y=\tan ^{-1} \frac{y}{x}+C$ |
We have, $y^2 d x+\left(x^2-x y+y^2\right) d y=0 \Rightarrow \frac{d y}{d x}=-\frac{y^2}{x^2-x y+y^2}$ Putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$, we get $v+x \frac{d v}{d x}=-\frac{v^2}{1-v+v^2}$ $\Rightarrow x \frac{d v}{d x}=\frac{-v-v^3}{v^2-v+1}$ $\Rightarrow \frac{v^2-v+1}{v\left(v^2+1\right)} d v=-\frac{d x}{x}$ $\Rightarrow \left(\frac{1}{v}-\frac{1}{v^2+1}\right) d v=-\frac{d x}{x}$ On integrating, we get $\log v-\tan ^{-1} v=-\log x+C$ $\Rightarrow \log \left(\frac{y}{x}\right)-\tan ^{-1} \frac{y}{x}=-\log x+C \Rightarrow \log y=\tan ^{-1} \frac{y}{x}+C$ |