The equation of the plane passing through the point (0, 7, -7) and containing the line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$, is |
$x+ y + z= 0 $ $x- y - z= 0 $ $3x+ y + z= 0 $ $x- y - z+14= 0 $ |
$x+ y + z= 0 $ |
Let the equation of a plane passing through (0,7,-7) be $a(x-0) + b(y-7) + c(z+7) = 0 $ ........(i) The line $\frac{x+1}{-3}=\frac{y-3}{2}=\frac{z+2}{1}$passes through the point (-1, 3, -2) and its direction ratios are proportional to -3, 2, 1. If (i) contains this line, it must pass through (-1, 3, -2) and must be parallel to the line. Therefore, $a(-1) + b(-4) + c(5) = 0 $ .......(ii) and, $-3a + 2b + 1c = 0 $ ..........(iii) On solving (ii) and (iii) by cross-multiplication, we get $\frac{a}{-14}=\frac{b}{-14}=\frac{c}{-14}$ $⇒ \frac{a}{1}=\frac{b}{1}=\frac{c}{1}=λ$ (say) ⇒ $a = λ, b = λ, c = λ.$ Putting the values of a, b, c in (i), we obtain $λ(x-0) + λ (y-7) + λ (z + 7) = 0 ⇒ x + y + z = 0.$ |