If $a^3 + b^3 = 20$ and a + b = 5, then find the value of $a^4+b^4$. |
25 26 24 23 |
23 |
a + b = 5 a3 + b3 = 20 (a + b)3 = a3 + b3 + 3ab(a + b) (a + b)3 = a3 + b3 + 3ab(a + b) 53 = a3 + b3 + 3ab(5) = 3ab(5) = 125 – 20 = ab = 7 Now, (a + b)2 = a2 + b2 + 2ab = 52 = a2 + b2 + 2 × 7 = a2 + b2 = 25 – 14 = 11 We know that, (a2 + b2)2 = a4 + b4 + 2a2b2 112 = a4 + b4 + 2 × 49 = a4 + b4 = 121 – 98 = 23 |