Consider the following data:
A straight line trend by the method of least square is: |
$y=46+9.6$ (x-2012) $y = 23+ 6.9$ (x-2012) $y = 23+ 7.5$ (x-2012) $y=46+9.6x$ |
$y = 23+ 6.9$ (x-2012) |
The correct answer is Option (2) → $y = 23+ 6.9$ (x-2012) Given data: Year (x): 2010, 2011, 2012, 2013, 2014 Sales (y): 9, 18, 21, 29, 38 Let x' = x - 2012 (central year) to simplify calculations: x': -2, -1, 0, 1, 2 Compute sums: $Σx' = -2 -1 + 0 +1 +2 = 0$ $Σy = 9 + 18 + 21 + 29 + 38 = 115$ $Σx'y = (-2)(9) + (-1)(18) + (0)(21) + 1(29) + 2(38) = -18 -18 +0 +29 +76 = 69$ $Σx'^2 = 4 +1 +0 +1 +4 = 10$ Slope: $b = Σx'y / Σx'^2 = 69 / 10 = 6.9$ Intercept: $a = mean(y) = Σy / n = 115 / 5 = 23$ Trend line equation: $y = a + b x' = 23 + 6.9 x'$ Substitute x' = x - 2012: $y = 23 + 6.9(x - 2012)$ |