The binding energy per nucleon of the nucleus ${ }_{26}^{56} X$ in units of MeV is: (Given that $m_{H}=1.007825 u, m_{n}=1.008665 u$ and mass of ${ }_{26}^{56} X = 55.934939 u$) |
8.8 MeV 15 MeV 22 MeV 27.4 MeV |
8.8 MeV |
The correct answer is Option (1) → 8.8 MeV The mass deficit (Δm) is, $Δm=Zm_H+(A-Z)m_n-m_{nucleons}$ $=26(1.007)+30×1.008-55.934$ $=0.528u$ The energy equivalent of mass deficit is, $E=Δmc^2$ $=0.528×931.V$ $≃492.3MeV$ Binding energy per nucleon = $\frac{total\,binding\,energy}{Number \,of\,Nucleon}$ $=\frac{492.3}{56}≃8.79MeV$ |