If $P(A) =\frac{1}{4}, P(\overline{B})=\frac{1}{2}$ and $ P(A ∪ B)=\frac{5}{9}$, then $ P(A /B)$ is |
$\frac{7}{36}$ $\frac{7}{9}$ $\frac{7}{18}$ $\frac{7}{72}$ |
$\frac{7}{18}$ |
We have, $ P(A ∪ B)=\frac{5}{9}$ $⇒ P(A) +P(B) -P(A ∩ B)=\frac{5}{9}$ $⇒ \frac{1}{4}+\frac{1}{2}-P(A ∩ B)=\frac{5}{9}$ $⇒ P(A ∩ B)=\frac{7}{36}$ $⇒ P(B) P(A/B)=\frac{7}{36}$ $⇒ \frac{1}{2}× P(A/B)=\frac{7}{36}⇒ P(A/B)=\frac{7}{18}$ |