The solution of the differential equation $(x^2 + xy)dy = (x^2 + y^2)dx$ is |
$y + \log_e\left|\frac{y-2}{x}\right|= c$, ($c$ is an arbitrary constant) $\frac{y}{x} + \log_e\left|\frac{(y-x)^2}{x}\right|= c$, ($c$ is an arbitrary constant) $y - \log_e\left|\frac{y-x}{x}\right|= c$, ($c$ is an arbitrary constant) $y^2 + \log_e\left|\frac{(y-x)^2}{x}\right|= c$, ($c$ is an arbitrary constant) |
$\frac{y}{x} + \log_e\left|\frac{(y-x)^2}{x}\right|= c$, ($c$ is an arbitrary constant) |
The correct answer is Option (2) → $\frac{y}{x} + \log_e\left|\frac{(y-x)^2}{x}\right|= c$, ($c$ is an arbitrary constant) Given differential equation: $(x^2 + xy)dy = (x^2 + y^2)dx$ Rewriting: $\frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy}$ Divide numerator and denominator by $x^2$: $= \frac{1 + \left(\frac{y}{x}\right)^2}{1 + \frac{y}{x}}$ Put $v = \frac{y}{x} \Rightarrow y = vx$ $\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$ Now substitute: $v + x\frac{dv}{dx} = \frac{1 + v^2}{1 + v}$ $\Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{1 + v} - v = \frac{1 + v^2 - v(1 + v)}{1 + v}$ $= \frac{1 + v^2 - v - v^2}{1 + v} = \frac{1 - v}{1 + v}$ Now separate and integrate: $\frac{1 + v}{1 - v} dv = \frac{dx}{x}$ Integrate both sides: $\int \frac{1 + v}{1 - v} dv = \int \frac{dx}{x}$ Use: $\frac{1 + v}{1 - v} = \frac{(1 - v) + 2v}{1 - v} = 1 + \frac{2v}{1 - v}$ Then: $\int \left(1 + \frac{2v}{1 - v} \right) dv = \ln|x| + c$ $= v - 2\ln|1 - v| = \ln|x| + c$ Substitute $v = \frac{y}{x}$: $\frac{y}{x} - 2\ln\left|1 - \frac{y}{x}\right| = \ln|x| + c$ Multiply both sides by $1$ and adjust into answer form: $\frac{y}{x} + \ln\left|\frac{(y - x)^2}{x}\right| = c$ |