For the given probability distribution :
If mean $=\frac{19}{9}, $ then the value of constant A will be : |
$\frac{1}{9}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{2}{9}$ |
$\frac{1}{3}$ |
The correct answer is Option (3) → $\frac{1}{3}$ Since, sum of all probabilities must be 1. $A+\frac{2}{3}A+\frac{4}{27}+\frac{8A}{9}=1$ $⇒A\left(\frac{9+6+8}{9}\right)=1-\frac{4}{27}=\frac{23}{27}$ $⇒A×\frac{23}{9}=\frac{23}{27}$ $⇒A=\frac{9}{27}=\frac{1}{3}$ |