A 95% confidence interval states that the population mean is greater than 152 and less than 160. If $\sigma = 15$ and $z_{0.025} = 1.96$, then what sample size was used in the study? |
50 48 64 54 |
54 |
The correct answer is Option (4) → 54 $\text{Given:}$ $\sigma = 15,\quad z_{0.025} = 1.96$ $\text{Confidence interval: }(152,\ 160)$ $\text{The margin of error is:}$ $E = \frac{\text{Upper limit} - \text{Lower limit}}{2} = \frac{160 - 152}{2} = \frac{8}{2} = 4$ $\text{Formula for margin of error in a confidence interval:}$ $E = z_{0.025} \cdot \frac{\sigma}{\sqrt{n}}$ $\text{Substitute the values:}$ $4 = 1.96 \cdot \frac{15}{\sqrt{n}}$ $\text{Multiply both sides by }\sqrt{n}:$ $4\sqrt{n} = 1.96 \cdot 15$ $4\sqrt{n} = 29.4$ $\text{Divide both sides by 4:}$ $\sqrt{n} = \frac{29.4}{4} = 7.35$ $\text{Square both sides:}$ $n = (7.35)^2 = 54.0225$ $\text{Since sample size must be a whole number, round up:}$ $n = 54$ |