$\int\frac{\sin x-x\cos x}{x(x+\sin x)}dx=$ (where C is an arbitrary constant) |
$\log\left|\frac{x}{x-\sin x}\right|+C$ $\log\left|\frac{x}{x+x\sin x}\right|+C$ $\log\left|\frac{x}{x+\sin x}\right|+C$ $\log\left|\frac{x+\sin x}{x}\right|+C$ |
$\log\left|\frac{x}{x+\sin x}\right|+C$ |
The correct answer is Option (3) → $\log\left|\frac{x}{x+\sin x}\right|+C$ Given integrand: $\displaystyle \frac{\sin x - x\cos x}{x(x+\sin x)}$ Rewrite as $\displaystyle \frac{\sin x}{x(x+\sin x)}-\frac{\cos x}{x+\sin x}$ Note $\displaystyle \frac{\sin x}{x(x+\sin x)}=\frac{1}{x}-\frac{1}{x+\sin x}$ So integrand $=\frac{1}{x}-\frac{1+\cos x}{x+\sin x}=\frac{d}{dx}\!\left[\ln\!\left(\frac{x}{x+\sin x}\right)\right]$ Therefore $\displaystyle \int\frac{\sin x - x\cos x}{x(x+\sin x)}\,dx=\ln\left|\frac{x}{x+\sin x}\right|+C$ |