Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Matrices

Question:

If $\begin{bmatrix} 1 & 0 \\-1 & 7 \end{bmatrix}=A$ and $A^2-8A+KI=O,$ then the value of K is :

Options:

5

6

-7

7

Correct Answer:

7

Explanation:

The correct answer is Option (4) → 7

$A=\begin{bmatrix} 1 & 0 \\-1 & 7 \end{bmatrix}$

$A^2=\begin{bmatrix} 1 & 0 \\-1 & 7 \end{bmatrix}\begin{bmatrix} 1 & 0 \\-1 & 7 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\-8 & 49 \end{bmatrix}$

$A^2-8A=\begin{bmatrix} 1 & 0 \\-8 & 49 \end{bmatrix}-\begin{bmatrix} 8 & 0 \\-8 & 56\end{bmatrix}=\begin{bmatrix} -7 & 0 \\0 & -7 \end{bmatrix}$

so $KI=-(A^2-8A)=7\begin{bmatrix} 1 & 0 \\0 & 1 \end{bmatrix}$

so $K=7$