A monochromatic source emitting light of wavelength 300 nm has a power output of 33 W. Calculate the number of protons emitted by this source in 2 minutes. $(h=6.62×10^{-34}Js)$ |
$6×10^{21}$ $4.2×10^{20}$ $3.8×10^{24}$ $1.6×10^{19}$ |
$6×10^{21}$ |
The correct answer is Option (1) → $6×10^{21}$ The energy E of a single photon is related to its wavelength λ by the equation - $E=\frac{hc}{λ}$ where, λ = wavelength of light = $300 nm=3×10^{-9}m$ $E=\frac{(6.626×10^{-34})(3.0×10^{8})}{300×10^{-9}}$ $=\frac{1.9878×10^{-25}}{300×10^{-9}}=6.626×10^{-19}J$ Now, Total energy $E_{total}$ emitted in t = 2 sec = $P×t$ $=120×33$ $=3960J$ ∴ $E_{total}$ = E × No. of Photons (N) $N=\frac{3960}{6.626×10^{-19}}$ $≈6×10^{21}$ |