At any instant t the values of voltage applied and the current through a series LCR circuit are given as: $V=\frac{1}{\sqrt{2}} \sin (100 \pi t) V$ $I=\frac{1}{\sqrt{2}} \sin (100 \pi t+\frac{\pi}{3}) A$ The average power consumed in the circuit is given by: |
$\frac{1}{8} W$ $\frac{1}{4} W$ $\frac{1}{2} W$ $\frac{\sqrt{3}}{4} W$ |
$\frac{1}{8} W$ |
The correct answer is Option (1) → $\frac{1}{8} W$ To find the average power consumed in a circuit, $P_{avg}=V_{rms}I_{rms}\cos\phi$ Given, $V=\frac{1}{\sqrt{2}}\sin(100πt)$ $I=\frac{1}{\sqrt{2}}\sin\left(100πt+\frac{π}{3}\right)$ $V_{rms}=\frac{V_0}{\sqrt{2}}=\frac{1}{\sqrt{2}.\sqrt{2}}=\frac{1}{2}$ $I_{rms}=\frac{I_0}{\sqrt{2}}=\frac{1}{\sqrt{2}.\sqrt{2}}=\frac{1}{2}$ $∴P_{avg}=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\cos\left(\frac{π}{3}\right)$ $=\left(\frac{1}{2}\right)^3=\frac{1}{8} W$ |