Let $\begin{vmatrix}3&y\\x&1\end{vmatrix}=\begin{vmatrix}3&2\\4&1\end{vmatrix}$ and x, y are natural numbers, then the number of solutions for the system is: |
1 2 4 8 |
4 |
The correct answer is Option (3) → 4 Given determinant: $\begin{vmatrix}3 & y \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}$ Compute RHS determinant: $3*1 - 2*4 = 3 - 8 = -5$ LHS determinant: $3*1 - x*y = 3 - xy$ Equate: $3 - xy = -5 \Rightarrow xy = 8$ Natural numbers $(x,y)$ such that $xy = 8$: $(1,8), (2,4), (4,2), (8,1)$ Number of solutions = 4 |