The angle between two lines whose direction ratios are proportional to 1, 1, -2 and $(\sqrt{3}-1),(-\sqrt{3}-1),-4$ is: |
$\frac{\pi}{3}$ $\pi$ $\frac{\pi}{6}$ $\frac{\pi}{2}$ |
$\frac{\pi}{3}$ |
The correct answer is Option (1) → $\frac{\pi}{3}$ let $\vec{v_1}=\hat i+\hat j-2\hat k$ $\vec{v_2}=(\sqrt{3}-1)\hat i+(-\sqrt{3}-1)\hat j-4\hat k$ $|\vec{v_1}|=\sqrt{1^2+1^2+(-2)^2}=\sqrt{6}$ $|\vec{v_2}|=\sqrt{(\sqrt{3}-1)^2+(-\sqrt{3}-1)^2+(-4)^2}$ $=\sqrt{3+1-2\sqrt{3}+3+1+2\sqrt{3}+16}$ $=\sqrt{24}=2\sqrt{6}$ so $\vec{v_1},\vec{v_2}=|\vec{v_1}||\vec{v_2}|\cos θ$ $\cos θ=\frac{\sqrt{3}-1-\sqrt{3}-1+8}{\sqrt{6}×2\sqrt{6}}$ $=\frac{6}{2×6}=\frac{1}{2}$ $θ=\frac{\pi}{3}$ |