A 50 W, 100 V bulb is to be used on a 200 V, 50 Hz a.c. supply. Calculate the inductance of inductor used so that the bulb glows with normal brightness |
$\frac{2\sqrt{3}}{\pi}H$ $\frac{\sqrt{3}}{\pi}H$ $\frac{100\sqrt{3}}{\pi}H$ $\frac{200\sqrt{3}}{\pi}H$ |
$\frac{2\sqrt{3}}{\pi}H$ |
The correct answer is Option (1) → $\frac{2\sqrt{3}}{\pi}H$ Given: Bulb rating: $P = 50\ \text{W},\ V_{\text{bulb}} = 100\ \text{V}$ Supply: $V_s = 200\ \text{V},\ f = 50\ \text{Hz}$ Bulb resistance: $R = \frac{V_{\text{bulb}}^2}{P} = \frac{100^2}{50} = 200\ \Omega$ The inductive reactance $X_L$ of the series inductor satisfies: $(V_s)^2 = V_R^2 + V_L^2 \Rightarrow V_L = \sqrt{V_s^2 - V_R^2}$ $V_L = \sqrt{200^2 - 100^2} = \sqrt{40000 - 10000} = \sqrt{30000} = 100\sqrt{3}\ \text{V}$ Inductive reactance: $X_L = \frac{V_L}{I}$, where $I = \frac{V_R}{R} = \frac{100}{200} = 0.5\ \text{A}$ $X_L = \frac{100 \sqrt{3}}{0.5} = 200 \sqrt{3}\ \Omega$ Inductance: $X_L = 2 \pi f L \Rightarrow L = \frac{X_L}{2 \pi f} = \frac{200 \sqrt{3}}{2 \pi \cdot 50} = \frac{2 \sqrt{3}}{\pi}\ \text{H}$ Inductance L = $\frac{2 \sqrt{3}}{\pi}$ H |