If 8K6 + 15K3 - 2 = 0 Find K + \(\frac{1}{K}\) (positive value) |
2\(\frac{1}{2}\) \(\frac{5}{4}\) \(\frac{3}{7}\) 2 |
2\(\frac{1}{2}\) |
Formula → 15K3 = 16K3 - K3
8K6 + 16K3 - K3 - 2 = 0 8K3 (K3 + 2) - 1 (K3 + 2)= 0 K3 = \(\frac{1}{8}\) or K3 = -2 So if, K3 = \(\frac{1}{8}\) → K = \(\sqrt [3]{\frac{1}{8}}\) = \(\frac{1}{2}\) ⇒ K + \(\frac{1}{K}\) = \(\frac{1}{2}\) + 2 = \(\frac{5}{2}\) or 2\(\frac{1}{2}\) |