If m is the slope of the tangent to the curve $e^y=1+x^2$, then |
$|m|>1$ $m<1$ $|m|<1$ $|m| \leq 1$ |
$|m| \leq 1$ |
We have, $e^y=1+x^2$ $\Rightarrow e^y \frac{d y}{d x}=2 x$ [Differentially w.r.t. x] $\Rightarrow \left(1+x^2\right) \frac{d y}{d x}=2 x$ [∵ $e^y=1+x^2$] $\Rightarrow \frac{d y}{d x}=\frac{2 x}{1+x^2}$ $\Rightarrow |m|=\frac{2|x|}{1+|x|^2}$ Now, A.M. $\geq$ G.M. $\Rightarrow \frac{1+|x|^2}{2} \geq \sqrt{1 \times|x|^2}$ $\Rightarrow \frac{1+|x|^2}{2} \geq|x|$ $\Rightarrow 1+|x|^2 \geq 2|x|$ $\Rightarrow 1 \geq \frac{2|x|}{1+|x|^2} \Rightarrow 1 \geq|m| \Rightarrow|m| \leq 1$ |