Find the domain of function $f(x) = \log_4[\log_5\{\log_3(18x-x^2-77)\}]$. |
(8, 10) (-8, 10) (8, -10) (-8, -10) |
(8, 10) |
f(x) is defined if $\log_5\{\log_3(18x-x^2-77)\} > 0$ and $18x-x^2-77>0$ or $\log_3 (18x-x^2-77) >5^0$ and $x^2-18x+77 <0$ or $\log_3 (18x-x^2-77) > 1$ and $(x - 11)(x-7)<0$ or $18x-x^2-77>3^1$ and $7 < x < 11$ or $18x-x^2-80> 0$ and $7 < x < 11$ or $x^2-18x + 80 < 0$ and $7 < x < 11$ or $(x-10)(x-8)<0$ and $7<x<11$ or $8<x<10$ and $7<x<11$ or $8 < x < 10$ or $x ∈ (8, 10)$ Hence, the domain off (x) is (8, 10). |