The interval in which function given by $f(x)=sin^4x+cos^4x, x\in \left[0, \frac{\pi}{2}\right]$ is decreasing is : |
$\left(0, \frac{\pi}{4}\right]$ $\left(0, \frac{\pi}{4}\right)$ $\left[0, \frac{\pi}{4}\right)$ $\left[0, \frac{\pi}{4}\right]$ |
$\left[0, \frac{\pi}{4}\right]$ |
The correct answer is Option (4) → $\left[0, \frac{\pi}{4}\right]$ $f(x)=\sin^4x+\cos^4x$ $=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x$ $=1-2\sin^2x\cos^2x$ $=1-\frac{1}{2}(\sin 2x)^2$ $f'(x)=-\frac{1}{2}×2\sin 2x×\cos 2x×2$ $=-2\sin 2x\cos 2x$ $=-\sin 4x$ The function $f(x)$ is decreasing where $f'(x)<0$. $⇒-\sin 4x<0$ $⇒\sin 4x>0$ $⇒4x∈[0,\pi]$ $⇒x∈\left[0, \frac{\pi}{4}\right]$ |