An edge of a variable cube is increasing at the rate of 3 cm/s. How fast is the volume of the cube increasing when the edge is 10 cm long ? |
100 $cm^3/s$ 300 $cm^3/s$ 900 $cm^3/s$ 600 $cm^3/s$ |
900 $cm^3/s$ |
The correct answer is Option (3) → 900 $cm^3/s$ Let x → edge $\frac{dx}{dt}=3cm/s$ Volume = $V(x)=x^3$ $\frac{dV(x)}{dt}=3x^2\frac{dx}{dt}⇒\left.\frac{dV(x)}{dt}\right]_{x=10}=3×10^2×3$ $=900\,cm^3/s$ |