Let f(x) = sin x, g(x) = [x + 1] and h(x) = gof(x), where [.] is the greatest integer function. Then, $h' \left(\frac{\pi}{2}\right)$ is |
1 -1 non-existent none of these |
non-existent |
We have, f(x) = sin x and g(x) = [x + 1] ∴ h(x) = gof(x) = g(f(x)) = g(sin x) = [sin x + 1] Now, (LHD at x = $\frac{\pi}{2}$) = $\lim\limits_{\alpha \rightarrow 0} \frac{h(\pi / 2-\alpha)-h(\pi / 2)}{-\alpha}$ ⇒ (LHD at x = $\frac{\pi}{2}$) = $\lim\limits_{\alpha \rightarrow 0} \frac{\left[\sin \left(\frac{\pi}{2}-\alpha\right)+1\right]-\left[\sin \frac{\pi}{2}+1\right]}{-\alpha}$ ⇒ (LHD at x = $\frac{\pi}{2}$) = $\lim\limits_{\alpha \rightarrow 0} \frac{1-2}{-\alpha}=\infty$ Similarly, we have (RHD at x = $\frac{\pi}{2}$) = $-\infty$ Hence, $h'\left(\frac{\pi}{2}\right)$ does not exist. |