\(\int \frac{dx}{x^{3}\left(1-\frac{1}{2x^{2}}\right)}\) is equal to |
\(\log\left|2x^{2}-1\right|+2\log \left|x\right|+C\) \(\log\left|2x^{2}-1\right|-2\log \left|2x\right|+C\) \(\log\left|2x^{2}-1\right|-\log\left|x^2\right|-\log 2+C\) \(\log \left|1-\frac{1}{2x^{2}}\right|+C |
\(\log\left|2x^{2}-1\right|-\log\left|x^2\right|-\log 2+C\) |
Let \(1-\frac{1}{2x^2}=t\) |