Target Exam

CUET

Subject

General Aptitude Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

If $7 \cos ^2 \theta+5 \sin ^2 \theta-6=0,\left(0^{\circ}<\theta<90^{\circ}\right)$, then what is the value of $\sqrt{\frac{{cosec} \theta+\tan \theta}{\sec \theta-\cot \theta}}$

Options:

$\sqrt{2}+1$

$\sqrt{2}-1$

$\sqrt{3}+1$

$\sqrt{3}-1$

Correct Answer:

$\sqrt{2}+1$

Explanation:

We are given that :-

7 cos²θ + 5 sin²θ - 6 = 0

2 cos²θ + 5 cos²θ + 5 sin²θ = 6

{ using , sin²θ + cos²θ = 1 }

2 cos²θ + 5 = 6

2 cos²θ = 1

cosθ = \(\frac{1}{ √2 }\)

{ cos45º = \(\frac{1}{ √2 }\) }

So, θ = 45º

Now,

\(\sqrt {(cosecθ + tanθ )/ ( secθ - cotθ )  }\)

= \(\sqrt {(cosec 45º + tan 45º )/ ( sec 45º - cot 45º )  }\)

= \(\sqrt {( √2 + 1)/ ( √2 - 1 )  }\)

= \(\sqrt {( √2 + 1)/ ( √2 - 1 )  }\) × \(\sqrt {( √2 + 1)/ ( √2+ 1 )  }\)

=  √2 + 1