If $7 \cos ^2 \theta+5 \sin ^2 \theta-6=0,\left(0^{\circ}<\theta<90^{\circ}\right)$, then what is the value of $\sqrt{\frac{{cosec} \theta+\tan \theta}{\sec \theta-\cot \theta}}$ |
$\sqrt{2}+1$ $\sqrt{2}-1$ $\sqrt{3}+1$ $\sqrt{3}-1$ |
$\sqrt{2}+1$ |
We are given that :- 7 cos²θ + 5 sin²θ - 6 = 0 2 cos²θ + 5 cos²θ + 5 sin²θ = 6 { using , sin²θ + cos²θ = 1 } 2 cos²θ + 5 = 6 2 cos²θ = 1 cosθ = \(\frac{1}{ √2 }\) { cos45º = \(\frac{1}{ √2 }\) } So, θ = 45º Now, \(\sqrt {(cosecθ + tanθ )/ ( secθ - cotθ ) }\) = \(\sqrt {(cosec 45º + tan 45º )/ ( sec 45º - cot 45º ) }\) = \(\sqrt {( √2 + 1)/ ( √2 - 1 ) }\) = \(\sqrt {( √2 + 1)/ ( √2 - 1 ) }\) × \(\sqrt {( √2 + 1)/ ( √2+ 1 ) }\) = √2 + 1 |