Differentiation of $\log[\log(\log x^5)]$ with respect to $x$ is |
$\frac{5}{x(\log x^5)\log(\log x^5)}$ $\frac{5}{x\log(\log x^5)}$ $\frac{5x^2}{(\log x^5)\log(\log x^5)}$ $\frac{5x^4}{(\log x^5)\log(\log x^5)}$ |
$\frac{5}{x(\log x^5)\log(\log x^5)}$ |
The correct answer is Option (1) → $\frac{5}{x(\log x^5)\log(\log x^5)}$ Let \( y = \log[\log(\log(x^5))] \) Differentiate using chain rule: $\frac{dy}{dx} = \frac{1}{\log(\log(x^5))} \cdot \frac{1}{\log(x^5)} \cdot \frac{1}{x^5} \cdot \frac{d}{dx}(x^5)$ $\frac{dy}{dx} = \frac{1}{\log(\log(x^5))} \cdot \frac{1}{\log(x^5)} \cdot \frac{1}{x^5} \cdot 5x^4$ $ \frac{dy}{dx} = \frac{5x^4}{x^5 \log(x^5) \log(\log(x^5))} = \frac{5}{x \log(x^5) \log(\log(x^5))}$ |