If $x^2-2 \sqrt{5} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$ |
$612 \sqrt{5}$ $408 \sqrt{5}$ $610 \sqrt{5}$ $406 \sqrt{5}$ |
$610 \sqrt{5}$ |
If $x^2-2 \sqrt{5} x+1=0$, then what is the value of $x^5+\frac{1}{x^5}$ = ? x5 + $\frac{1}{x^5}$ = (x2 + $\frac{1}{x^2}$) × (x3 + $\frac{1}{x^3}$) – (x + $\frac{1}{x}$) If $K+\frac{1}{K}=n$ then, $K^2+\frac{1}{K^2}$ = n2 – 2 If x + \(\frac{1}{x}\) = n then, $x^3 +\frac{1}{x^3}$ = n3 - 3 × n If $x^2-2 \sqrt{5} x+1=0$, then, divide equation by x on both sides, x + \(\frac{1}{x}\) = $2\sqrt{5}$ $x^3 +\frac{1}{x^3}$ = ( $2\sqrt{5}$)3 - 3 × $2\sqrt{5}$ = $34\sqrt{5}$ $x^2 +\frac{1}{x^2}$ = ($2\sqrt{5}$)2 – 2 = 18 x5 + $\frac{1}{x^5}$ = 18 × $34\sqrt{5}$ - $2\sqrt{5}$ x5 + $\frac{1}{x^5}$ = $612\sqrt{5}$ - $2\sqrt{5}$ = $610 \sqrt{5}$ |