Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

Let $\vec a$ and $\vec b$ be two non-zero vectors.

Statement-1: (i) $|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2 + 2 (\vec a.\vec b)$

(ii) $|\vec a−\vec b|^2 =|\vec a|^2 + |\vec b|^2 -2 (\vec a.\vec b)$

Statement-2: The greatest and least values of $|\vec a +\vec b|$ are $|\vec a|+|\vec b|$ and $\left||\vec a|-|\vec b|\right|$ respectively.

Options:

Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. 

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. 

Statement-1 is True, Statement-2 is False.

Statement-1 is False, Statement-2 is True.

Correct Answer:

Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. 

Explanation:

Clearly, statement-1 is true.

We have,

$|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2+2|\vec a||\vec b|\cos θ$

So, $|\vec a +\vec b|$ is greatest or least according as $\cos θ$ is greatest or least.

Hence, the greatest and least values of $|\vec a +\vec b|$ bare given by

$|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2+2|\vec a||\vec b|=(|\vec a|+|\vec b|)^2$

and, $|\vec a -\vec b|^2 = |\vec a|^2 + |\vec b|^2-2|\vec a||\vec b|=(|\vec a|-|\vec b|)^2$

∴ Greatest value of $|\vec a +\vec b|=|\vec a|+|\vec b|$

Least value of $|\vec a +\vec b|=\left||\vec a|-|\vec b|\right|$