Let $\vec a$ and $\vec b$ be two non-zero vectors. Statement-1: (i) $|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2 + 2 (\vec a.\vec b)$ (ii) $|\vec a−\vec b|^2 =|\vec a|^2 + |\vec b|^2 -2 (\vec a.\vec b)$ Statement-2: The greatest and least values of $|\vec a +\vec b|$ are $|\vec a|+|\vec b|$ and $\left||\vec a|-|\vec b|\right|$ respectively. |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. |
Clearly, statement-1 is true. We have, $|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2+2|\vec a||\vec b|\cos θ$ So, $|\vec a +\vec b|$ is greatest or least according as $\cos θ$ is greatest or least. Hence, the greatest and least values of $|\vec a +\vec b|$ bare given by $|\vec a +\vec b|^2 = |\vec a|^2 + |\vec b|^2+2|\vec a||\vec b|=(|\vec a|+|\vec b|)^2$ and, $|\vec a -\vec b|^2 = |\vec a|^2 + |\vec b|^2-2|\vec a||\vec b|=(|\vec a|-|\vec b|)^2$ ∴ Greatest value of $|\vec a +\vec b|=|\vec a|+|\vec b|$ Least value of $|\vec a +\vec b|=\left||\vec a|-|\vec b|\right|$ |