Two bodies of masses m and M are placed a distance d apart. The gravitational potential at the position where the gravitational field due to them is zero is V. |
V = $-\frac{G}{d}(m + M)$ V = $-\frac{Gm}{d}$ V = $-\frac{GM}{d}$ V = $-\frac{G}{d}(m + M)^2$ |
V = $-\frac{G}{d}(m + M)^2$ |
Let gravitational field be zero at a point lying at distance x from M. Then, $\frac{G M}{x^2}=\frac{G m}{(d-x)^2}$ $\Rightarrow \frac{d-x}{x}=\sqrt{\frac{m}{M}}$ $\Rightarrow \frac{d}{x}-1=\sqrt{\frac{m}{M}}$ $\Rightarrow x=\left(\frac{\sqrt{M}}{\sqrt{M}+\sqrt{m}}\right) d$ ......(1) $\Rightarrow(d-x)=\left(\frac{\sqrt{M}}{\sqrt{M}+\sqrt{m}}\right) d$ ......(2) Since, $V_p=-\frac{G m}{d-x}-\frac{G m}{x}$ ......(3) Substituting (1) and (2) in (3), we get $V_p=-\frac{G}{d}(\sqrt{m}+\sqrt{M})^2$ |