Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

Let $\vec r, \vec a, \vec b$ and $\vec c$ be four non-zero vectors such that $\vec r.\vec a=0,|\vec r×\vec b|=|\vec r||\vec b|,|\vec r×\vec c|=|\vec r||\vec c|$, then $[\vec a\,\,\vec b\,\,\vec c]=$

Options:

-1

0

1

2

Correct Answer:

0

Explanation:

We have,

$\left.\begin{matrix}\vec r.\vec a=0⇒\vec r⊥\vec a\\|\vec r×\vec b|=|\vec r||\vec b|⇒\vec r⊥\vec b\\and\,|\vec r×\vec c|=|\vec r||\vec c|⇒\vec r⊥\vec c\end{matrix}\right\}⇒\vec a,\vec b,\vec c$ are coplanar.

Hence, $[\vec a\,\,\vec b\,\,\vec c]=0$