$∫\frac{1-sinx}{cos^2x}dx$ is equal to : |
$tanx-secx+C$ Where C is the constant of integration $cotx-cosecx+C$ Where C is the constant of integration $tanx+secx+C$ Where C is the constant of integration $cotx+cosecx+C$ Where C is the constant of integration |
$tanx-secx+C$ Where C is the constant of integration |
Integral: $\int \frac{1-\sin x}{\cos^{2}x}\,dx$ Split terms: $\int \frac{1}{\cos^{2}x}\,dx - \int \frac{\sin x}{\cos^{2}x}\,dx$ $=\int \sec^{2}x\,dx - \int \frac{\sin x}{\cos x}\cdot\frac{1}{\cos x}\,dx$ $=\int \sec^{2}x\,dx - \int \tan x \sec x\,dx$ $=\tan x - \sec x + C$ Required answer = $\tan x - \sec x + C$ |