Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Determinants

Question:

If $2x – y =\begin{bmatrix}3&-3&0\\3&3&2\end{bmatrix}$ and $2y + x =\begin{bmatrix}4&1&5\\-1&4&-4\end{bmatrix}$, then

Options:

$x + y =\begin{bmatrix}3&0&-1\\0&3&-2\end{bmatrix}$

$x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$

$x - y =\begin{bmatrix}1&-2&3\\2&1&2\end{bmatrix}$

$y=\begin{bmatrix}1&1&-2\\-1&1&-2\end{bmatrix}$

Correct Answer:

$x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$

Explanation:

$∵2x – y =\begin{bmatrix}3&-3&0\\3&3&2\end{bmatrix}$  ...(i)

$⇒4x – 2y =\begin{bmatrix}6&-6&0\\6&6&4\end{bmatrix}$  ...(ii)

and $x+2y=\begin{bmatrix}4&1&5\\-1&4&-4\end{bmatrix}$  ....(iii)

Adding Eqs. (ii) and (iii), then

$5x=\begin{bmatrix}10&-5&5\\5&10&0\end{bmatrix}$  $∴x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$

From Eq. (iii), $2x+4y =\begin{bmatrix}8&2&10\\-2&8&-8\end{bmatrix}$  ....(iv)

Substracting Eq. (i) from (iv), then

$5y=\begin{bmatrix}5&5&10\\-5&5&-10\end{bmatrix}$  $∴\begin{bmatrix}1&1&2\\-1&1&-2\end{bmatrix}$