If $2x – y =\begin{bmatrix}3&-3&0\\3&3&2\end{bmatrix}$ and $2y + x =\begin{bmatrix}4&1&5\\-1&4&-4\end{bmatrix}$, then |
$x + y =\begin{bmatrix}3&0&-1\\0&3&-2\end{bmatrix}$ $x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$ $x - y =\begin{bmatrix}1&-2&3\\2&1&2\end{bmatrix}$ $y=\begin{bmatrix}1&1&-2\\-1&1&-2\end{bmatrix}$ |
$x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$ |
$∵2x – y =\begin{bmatrix}3&-3&0\\3&3&2\end{bmatrix}$ ...(i) $⇒4x – 2y =\begin{bmatrix}6&-6&0\\6&6&4\end{bmatrix}$ ...(ii) and $x+2y=\begin{bmatrix}4&1&5\\-1&4&-4\end{bmatrix}$ ....(iii) Adding Eqs. (ii) and (iii), then $5x=\begin{bmatrix}10&-5&5\\5&10&0\end{bmatrix}$ $∴x=\begin{bmatrix}2&-1&1\\1&2&0\end{bmatrix}$ From Eq. (iii), $2x+4y =\begin{bmatrix}8&2&10\\-2&8&-8\end{bmatrix}$ ....(iv) Substracting Eq. (i) from (iv), then $5y=\begin{bmatrix}5&5&10\\-5&5&-10\end{bmatrix}$ $∴\begin{bmatrix}1&1&2\\-1&1&-2\end{bmatrix}$ |