The relation R in the set R of real numbers defined as : R ={$(a, b) : a ≤ b^2$} is : |
an equivalence relation only transitive neither reflexive nor symmetric nor transitive Reflexive and transitive but not symmetric |
neither reflexive nor symmetric nor transitive |
Given relation: $R = \{(a, b) : a \le b^2\}, a, b \in \mathbb{R}$ Check properties: Reflexive: $a \le a^2$ for all $a \in \mathbb{R}$? - False, e.g., $a = 0.5 \Rightarrow 0.5 \le 0.25$ is false. - So, not reflexive. Symmetric: If $a \le b^2$, does $b \le a^2$? - False, e.g., $a = 1, b = 2 \Rightarrow 1 \le 4$ but $2 \le 1$ is false. - So, not symmetric. Transitive: If $a \le b^2$ and $b \le c^2$, does $a \le c^2$? - False, e.g., $a = 3, b = 2, c = 1 \Rightarrow 3 \le 4$, $2 \le 1$ false; counterexample shows transitivity fails. - So, not transitive. Conclusion: neither reflexive, symmetric, nor transitive. |